

Identification and Overview

Outside Air Units - Humidity or Combination Temp/Humidity Sensors

- 10 Points of Calibration from 10 to 90%RH
- Humidity Only or Temp./Humidity Combination
- Replaceable Filter
- ±2% and ±3%RH Accuracies
- BBox2 or BBox Enclosure Styles
- Wide Selection of Temperature Sensing Elements

Humidity control is an important aspect of any climate control system. Therefore, humidity sensors must be both accurate and dependable. Humidity transmitters are calibrated at 10 points from 10 to 90% RH for accuracy, eliminating field calibration.

The Outside Air Units are also extremely dependable, featuring two of the most watertight enclosures available today. The BBox and BBox2 are made of UV-resistant polycarbonate and carry an IP66 rating. The BBox is only available for units with a temperature transmitter and a humidity transmitter.

Part #s: N1-10K-2-H200-O-BB-A N1-10K-2-H200-O-WP-A

N1-10K-2-H300-O-BB2-A N1-10K-2-H300-O-BB-A

N1-10K-2-H300-O-WP-A N1-H200-O-BB2-A

N1-H200-O-WP-A

External temperature, humidity and air quality are affected by radiant heat from the surfaces of Shade effectively blocks the radiant heat,

sensors buildings and parking lots. The Weather

Approvals: RoHS

Specifications	
Power:	
10 to 35 VDC	For 0 to 5 or 1 to 5 VDC or 4 to 20 mA Humidity Outputs
15 to 35 VDC	For 0 to 10 or 2 to 10 VDC Humidity Output
12 to 27 VAC	For 0 to 5 or 1 to 5 VDC Humidity Output
	For 0 to 10 or 2 to 10 VDC Humidity Output
Power Consumption:	•
22 mA max. DC	For 0 to 5 or 1 to 5 VDC or 4 to 20 mA Humidity Outputs
6 mA max. DC	For 0 to 10 or 2 to 10 VDC Humidity Outputs
0.53 VA max. AC	For 0 to 5 or 1 to 5 VDC Humidity Output
0.14 VA max. AC	For 0 to 10 or 2 to 10 VDC Humidity Output
Sensor:	
Humidity	Capacitive Polymer
Drift	0.5% per year
Response time	<5 seconds in moving air
RH Linearity	Negligible, factory corrected linear from 10 to 80% RH
RH Hysteresis	Factory corrected to <1%
Opt. Temp	Passive RTD or Thermistor
System Accuracy:	
	±2% (10 to 80% RH @ 25°C), ±3% (80 to 90% RH @ 25°C), Non-condensing
	±3% (10 to 90% RH @ 25°C), Non-condensing
	±0.36°F (0.2°C) from 32 to 158°F (0 to 70°C) - High accuracy units are available
	±0.55°F (0.31°C) @ 32°F (0°C) - High accuracy units are available
Filter: 80 micron sintered sta	
Output: Selectable via wiring	
	0 to 5, 1 to 5, 0 to 10 or 2 to 10VDC or 4 to 20mA at 0 to 100% RH
	Resistance RTD or Thermistor
Humidity Output Impedance	
Current	700Ω@ 24VDC, Voltage drop is 10VDC
	(Supply Voltage DC – Transmitter voltage drop 10VDC) / 0.02 Amps = Max load
Impedance Voltage	10ΚΩ
Probe Length:	
	5.3" (13.5cm) Duct Insertion, 1" diameter
	2.4" (6.1cm) Below Enclosure, 1" diameter
Dimensions: W x H x D	
	2.75" x 4.5" x 2.2", (70 x 114 x 55 mm)
	4.15" x 5" x 2.5", (105.4 x 127 x 63.5mm)
,	4.9" x 2.8" x 2.35", (124.8 x 71.6 x 59.7mm)
Termination: Open wire	
	18 to 26 AWG with Sealant Filled Crimp Connector (N1-SFC1000-x00)
	26 to 16 AWG with Sealant Filled Wire Nut (N1-SFC2000-x00)
Enclosure Material:	
Weatherproof (WP)	
	Polycarbonate, UV resistant
Enclosures Ratings:	
Weatherproof (WP)	
BBoxes (BB, BB2)	
Environmental Operation R	ange: -40° to 158°F (-40° to 70°C) • 0% to 100% RH

Outside Air Humidity Sensor Option Selection

Use the Option Selection Guide below to create your custom part number. Replace the number and parenthesis with the designator for each selection. Skip the designator and dashes for optional selections that are not required in your configuration.

N1- (#1)-(#2)-(#3)-A

#1: TEMPERATURE SENSOR OR TRANSMITTER (OPTIONAL)

1.8K	1.8K Thermistor
3K	.3K Thermistor
10K-2	.10K-2 Thermistor
10K-3	.10K-3 Thermistor
10K-3[11K]	10K-3[11K] Thermistor
20K	20K Thermistor
1K[375]	.1K Platinum RTD (375 curve)
1K[NI]	1K Ω Nickel RTD
1K	.1K Platinum RTD (385 curve)

Temperature Transmitters below require a BBox Enclosure

T1K[32 TO 212F]	1K Plat. RTD Transmitter, 4 to 20 mA Output, 32 to 212 $^{\circ}\text{F}$ Range
T1K[20 TO 120F]	1K Plat. RTD Transmitter, 4 to 20 mA Output, 20 to 120 $^{\circ}\text{F}$ Range
T1K[0 TO 100F]	1K Plat. RTD Transmitter, 4 to 20 mA Output, 0 to 100 °F Range
T1K[0 TO 100C]	1K Plat. RTD Transmitter, 4 to 20 mA Output, 0 to 100 °C Range
T1K[-7 TO 49C]	1K Plat. RTD Transmitter, 4 to 20 mA Output, -7 to 49 °C Range
T1K[-18 TO 38C]	1K Plat. RTD Transmitter, 4 to 20 mA Output, -18 to 38 $^{\circ}\text{C}$ Range

Matched Transmitters are also available. Contact your representative for ordering.

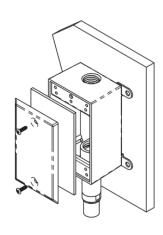
#2: HUMIDITY OUTPUT (REQUIRED)

H200	±2% Humidity Transmitter with Output of 0 to 5 V
H215	±2% Humidity Transmitter with Output of 1 to 5 V
H210	±2% Humidity Transmitter with 0 to 10 V Output
H212	±2% Humidity Transmitter with 2 to 10 V Output
H220	±2% Humidity Transmitter with Output of 4 to 20mA
H300	±3% Humidity Transmitter with Output of 0 to 5 V
H315	±3% Humidity Transmitter with Output of 1 to 5 V
H310	±3% Humidity Transmitter with 0 to 10 V Output
H312	±3% Humidity Transmitter with 2 to 10 V Output
H320	±3% Humidity Transmitter with Output of 4 to 20mA

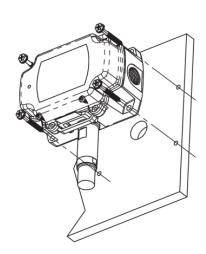
#3: ENCLOSURE STYLE (REQUIRED)

O-BB2	BBox2 (IP66, NEMA 4X)
O-BB	BBox (for units with a humidity and temp transmitter only) (IP66, NEMA 4X)

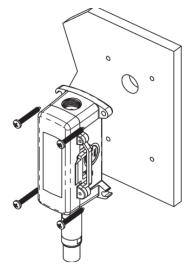
Additional options are available but not shown above.


Example Number: N1-(10K-2) - (H200) - (O-BB2) - A

Actual Number (with parenthesis removed): N1-10K-2-H200-O-BB2


Description: 10K-2 Thermistor, 0 to 5V or 4 to 20mA Humidity Output, BBox2 Enclosure.

Mounting


Mount in a permanently shaded area away from windows and doors. Do not mount in direct sunlight. Mount with the sensor probe pointed down. Drill a hole large enough for your sensor cable through your mounting surface. Mount the unit to the surface with the wiring knock out centered over the wiring hole. Pull the wiring into the unit and terminate using sealant filled connectors. Best practice is to seal the wiring hole with caulk after the wiring is installed. Be sure that the foam on the back of the unit makes a good weather tight seal.

Outside Humidity in a Weatherproof (WP) Enclosure

Outside Humidity in a BBox (BB) Enclosure

Outside Humidity in a BBox2 (BB2) Enclosure

Wiring and Termination

Wire the product with power disconnected. Proper supply voltage, polarity, and wiring connections are important to a successful installation. Not observing these recommendations may damage the product and will void the warranty.

- Do NOT run this device's wiring in the same conduit as AC power wiring of NEC class 1, NEC class 2, NEC class 3 or with wiring used to supply highly inductive loads such as motors, contactors and relays. Tests show that fluctuating and inaccurate signal levels are possible when AC power wiring is present in the same conduit as the signal lines. If you are experiencing any of these difficulties, please contact your representative.
- All wiring must comply with the National Electric Code (NEC) and local codes.

We recommend using twisted pair of at least 22AWG and sealant filled connectors for all wire connections. Larger gauge wire may be required for long runs.

Table 1: Humidity Transmitter with 4 to 20mA Output				
Wire Color	ire Color Purpose Note			
White	Not Used	Not Used		
Black	Humidity Output	4 to 20mA, To Analog Input of Controller		
Red	Power	7 to 40VDC		

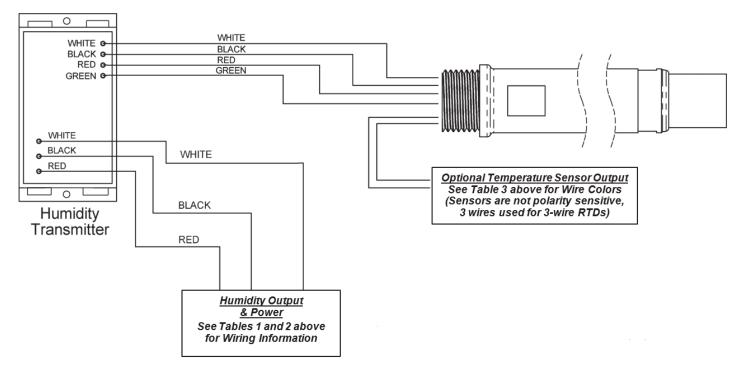

Table 2: Hur	Table 2: Humidity Transmitter with 0 to 5 or 1 to 5 VDC Output			
Wire Color	Purpose	Note		
White	Humidity Output	0 to 5 or 1 to 5 VDC, To Analog Input of Controller		
Black	GND (Common)	Ground for Power and Humidity Output		
Red	Power	7 to 40 VDC or 18 to 32 VAC		

Table 3: Humidity Transmitter with 0 to 10 or 2 to 10VDC Output				
Wire Color	Purpose Note			
White	Humidity Output	0 to 10 or 2 to 10VDC, To Analog Input of Controller		
Black	GND (Common)	Ground for Power and Humidity Output		
Red	Power	13 to 40 VDC or 18 to 32 VAC		

Table 4: Tempo	Table 4: Temperature Sensor Lead Wire Colors			
Therr	Thermistors		Platinum RTDs - 2 Wire	
1.8ΚΩ	Orange/Red	100Ω	Red/Red	
2.2ΚΩ	Brown/White	1ΚΩ	Orange/Orange	
3ΚΩ	Yellow/Black		Nickel RTD	
3.25ΚΩ	Brown/Green	1KΩ Green/Green		
3.3ΚΩ	Yellow/Brown	Silicon RTD		
10K-2Ω	Yellow/Yellow	2KΩ Brown/Blue		
10K-3Ω	Yellow/Red	Platinum RTDs - 3 Wire		
10K-3(11K)Ω	Yellow/Blue	100Ω	Red/Red/Black*	
20ΚΩ	White/White	1KΩ Orange/Orange/Bla		
47ΚΩ	Yellow/Orange	*In the 3-Wire RTD sensors listed abov		
50ΚΩ	White/Blue	the two wires of similar color are		
100ΚΩ	Yellow/White	connected together.		

Additional sensors are available so your sensor may not be listed on this table.

Wiring Diagram

NOTE: ±2% and ±3% humidity transmitters ARE polarity sensitive as well as reverse polarity protected.

Filter Care

A sintered filter protects the humidity sensor from various airborne particles and may need periodic cleaning. To do this, gently unscrew the filter from the probe. Rinse the filter in warm soapy water and rinse until clean. A nylon brush may be used if necessary. Gently replace the filter by screwing it back into the probe. The filter should screw all the way into the probe. Hand tighten only.

N1-HDOFS-A: Stainless Steel Sintered Filter Replacement for Outside Air Units

Humidity	Diagnostics				
Possible Problems:			Possible Solutions:		
Unit will not operate			Check for proper supply power. (See wiring diagram and power specifications		
Humidity ou	tput is at its maximu	m	Make sure the humidity sensor is wired properly.		
			 Verify humidity with a reference sensor. If humidity drops to 5% or below in the environment, the output will go to the maximum value. 		
Humidity output is at its minimum		n	Make sure the humidity sensor is wired properly.		
Humidity reading in controller's software appears to be off by more than the specified accuracy		ore	 Check all software parameters Determine if the sensor is exposed to an external air source different from the intended measured environment or reference device. 		
Output	Humidity Formula		Check the Humidity transmitter output against a calibrated reference such as a		
4 to 20mA	%RH =(mA-4)/0.16		2% accurate hygrometer. Measure the humidity at the sensor's location using		
0 to 5VDC	0 to 5VDC		the reference meter, then calculate the humidity transmitter output using the		
1 to 5VDC			humidity formula at left. Compare the calculated output to the actual humidity transmitter output (see the wiring diagram on page 2 for the humidity		
0 to 10VDC					
2 to 10VDC			transmitter output wire colors). If the calculated output differs from the humidity transmitter output by more than 5%, contact technical support.		

Temperature Diagnostics	
Possible Problems:	Possible Solutions:
Controller reports Incorrect temperature	Confirm the input is set up correctly in the controller's software
	Verify that the sensor wires are not physically shorted or open
	Check wiring for proper termination
	Measure the temperature at the temperature sensor's location using an accurate temperature standard. Disconnect the temperature sensor wires and measure the temperature sensor's resistance with an ohmmeter. Compare the temperature sensor's resistance to the appropriate temperature sensor table. If the measured resistance is different from the temperature table by more than 5%, call technical support.

Humidity Output DIP Switch Note:

The transmitter circuit board may have a three-position DIP switch that controls the humidity output value. This switch is set at the factory at the time of the order. The settings of the switch are shown at right in case you want to change them in the field. Be aware that the power requirements for the unit change depending on the humidity output value. See the specifications section for power requirements.

The black square represents the switch position, i.e., the "0-5 Vout" has all switches in the "off" position

Appendix - Symbols Key

Warning

Potential for death, serious injury, or permanent damage to a system.

Potential for injury, damage to a system, or system failure.

Useful information not related to injury or system damage.